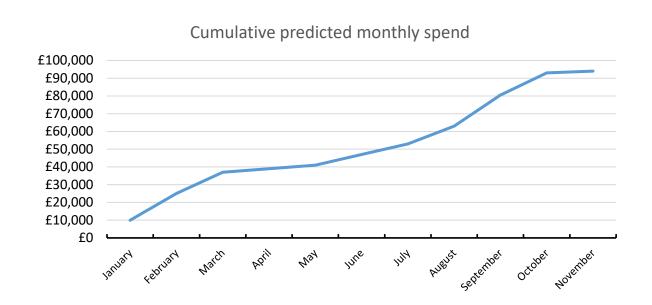


Department of Mechanical, Materials and Manufacturing Engineering

Project Monitoring - Part 2

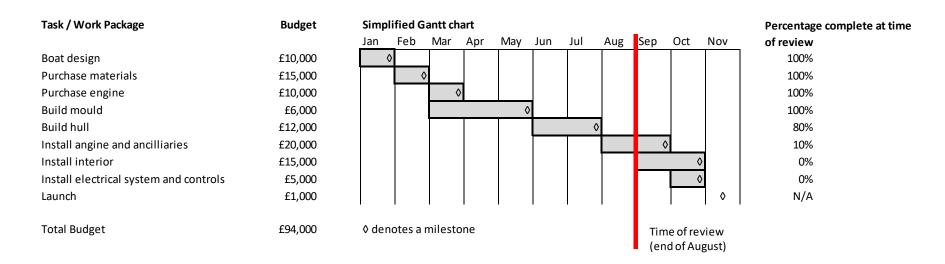
- Explaining EVA using a worked example
- Defining BCWS, BCWP and ACWP

The technique of Earned Value Analysis is presented using the example of a project building a power boat



Task / Work Package	Budget Simplified Gantt chart											
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
Boat design	£10,000											
Purchase materials	£15,000											
Purchase engine	£10,000											
Build mould	£6,000											
Build hull	£12,000											
Install angine and ancilliaries	£20,000											
Install interior	£15,000											
Install electrical system and controls	£5,000											
Launch	£1,000											┐⋄

- To the right of this are the task names
- The column to the right shows the budgeted (or predicted) cost of each task
- On the right hand side is a simplified Gantt chart indicating the expected progress of the project.

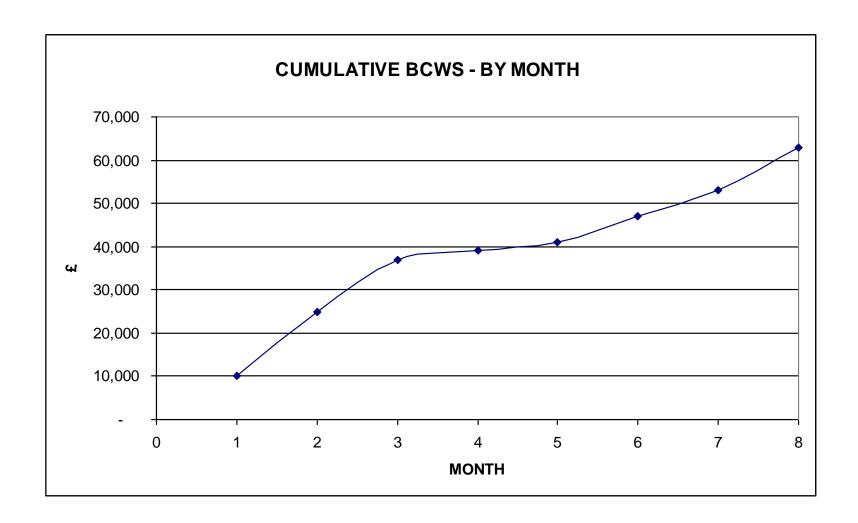

→ It is usual to assume that all spend increases linearly within a task unless extraordinary (e.g. lumpy) costs are expected.

- From this data we can plot the budgeted cost at convenient points
- In his case we plot on a monthly basis
- We will always use time, but it is equally possible to plot on the basis of milestones

Now we can construct our programme showing the expected costs

- Sometimes it is convenient to show milestones as well
- This shows milestones at the end of tasks (not always the case)
- It is usual to try to keep time between milestones reasonably short
 - Longer tasks may be sub-divided to achieve this
- We are carrying out a review at the end of August, so the state of the programme at that stage is indicated.

 Note that at this point, only 80% of "Build hull" is complete and only 10% of "Install engine and ancillaries" is complete.


The Budgeted Cost of Work Scheduled (BCWS)

- Now we introduce the first of the parameters, or Key Performance Indicators (KPIs), that we require to carry out the Earned Value Analysis (EVA)
- The first step is to plot out the estimated cumulative spend at each stage.
 - In this case at the end of each month.
- This is called the "Budgeted Cost of Work Scheduled" (BCWS)

<u>Month</u>	<u>BCWS</u>	<u>Cumulative</u> <u>BCWS</u>
January	£10,000	£10,000
February	£15,000	£25,000
March	£12,000	£37,000
April	£2,000	£39,000
May	£2,000	£41,000
June	£6,000	£47,000
July	£6,000	£53,000
August	£10,000	£63,000

This shows the data that have been drawn from the previous chart

- Note that the numbers reflect where we expect to be
- NOT where we are
- NOTE that we will plot the *cumulative* budget

THE PROJECT AT THE TIME OF THE REVIEW

At the review it is probable that:

- The costs are not to plan
- The programme is not to schedule

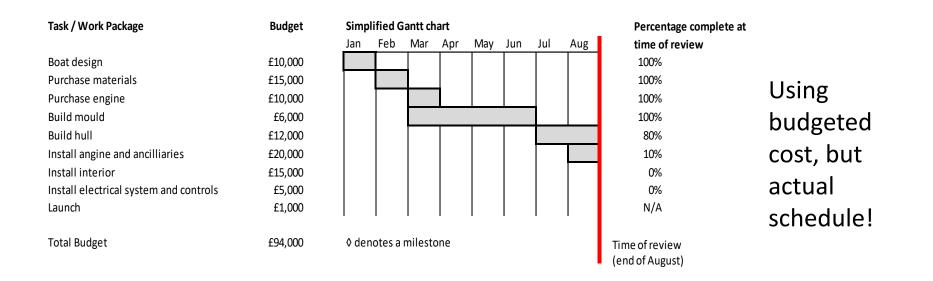
At the August review, the Programme Manager finds that the programme is as shown below.

→ Note that costs are presented as **budgeted costs against the plan, whereas progress is the actual progress**

Task / Work Package	Budget	Simplified Gantt chart						Percentage complete at		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	time of review
Boat design	£10,000									100%
Purchase materials	£15,000									100%
Purchase engine	£10,000									100%
Build mould	£6,000									100%
Build hull	£12,000									80%
Install angine and ancilliaries	£20,000									10%
Install interior	£15,000									0%
Install electrical system and controls	£5,000									0%
Launch	£1,000									N/A
Total Budget	£94,000	◊ der	notes a	milest	one					Time of review
										(end of August)

Compare this to the planned programme:

- Actual schedule:
 - Build mould takes 4 months rather than the planned 3
 - Build hull starts one month late
 - The build hull task is 80% complete
 - The install engine task is only 10% complete
- Actual costs:
 - Build mould costs £12,000 rather than £6,000
 - Build hull is £8,000 (at 80% complete) rather than £12,000
 - Install engine is £500 (at 10% complete) rather than the £5,000 expected at the end of August

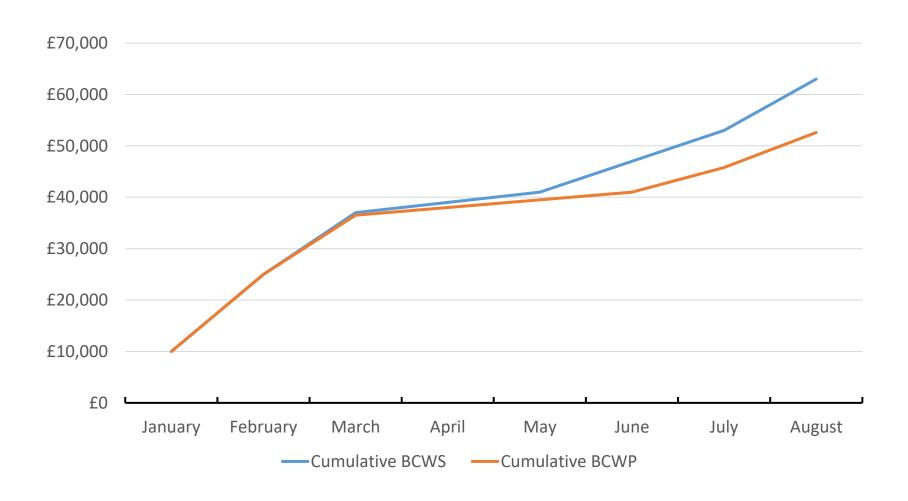

The Budgeted Cost of Work Performed (BCWP)

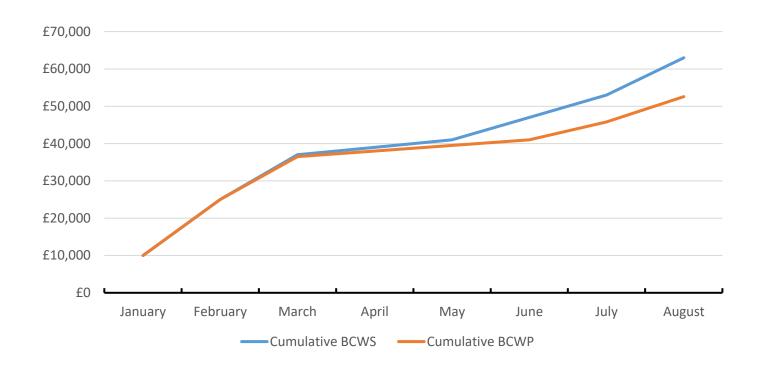
- The BCWP is a measure of how much work has actually been completed, also known as "Earned Value"
- If we monitor the work on he basis of the budgeted (expected) costs, then an under-spend indicates that less work than expected has been completed

Example:

- At the review BCWS = £100,000 and the BCWP = £80,000
- This indicates that only 80% or the planned work has been done.
- At the completion of the project the BCWP can not be greater than the BCWS → as this refers to budgeted cost, it can not reflect over-spend
- In mid programme, BCWP > BCWS indicates that the work is ahead of schedule.

The next step: calculate the BCWP for the revised programme from the original BCWS

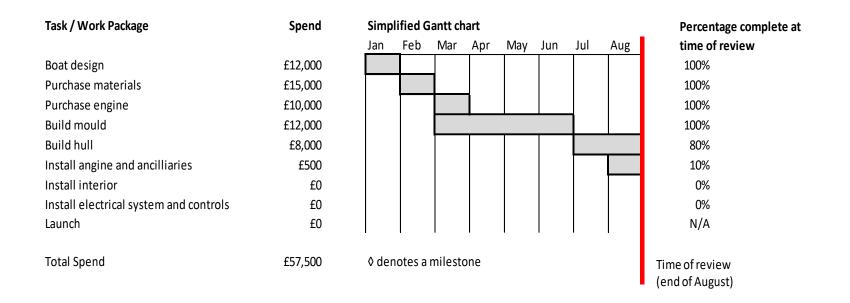



- First three tasks don't change
- Build mould task is still £6,000 but spread over 4 rather than 3 months.
- Build hull is 80% of £12,000 = £9,600.
- Install engine = 10% of £10,000 = £1,000

Now we extend the table to include BCWP:

<u>Month</u>	<u>BCWS</u>	Cumulative BCWS	<u>BCWP</u>	Cumulative BCWP
January	£10,000	£10,000	£10,000	£10,000
February	£15,000	£25,000	£15,000	£25,000
March	£12,000	£37,000	£11,500	£36,500
April	£2,000	£39,000	£1,500	£38,000
May	£2,000	£41,000	£1,500	£39,500
June	£6,000	£47,000	£1,500	£41,000
July	£6,000	£53,000	£4,800	£45,800
August	£10,000	£63,000	£6,800	£52,600

..... and plot cumulative BCWP with BCWS

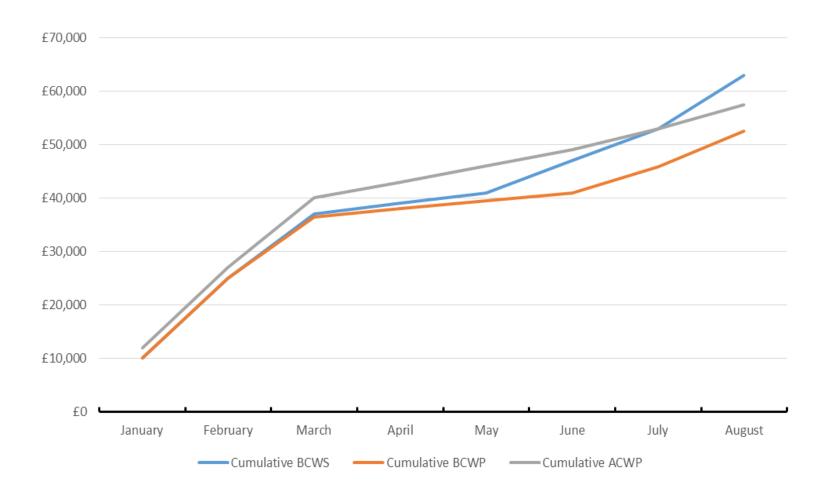


In this case BCWP runs below BCWS

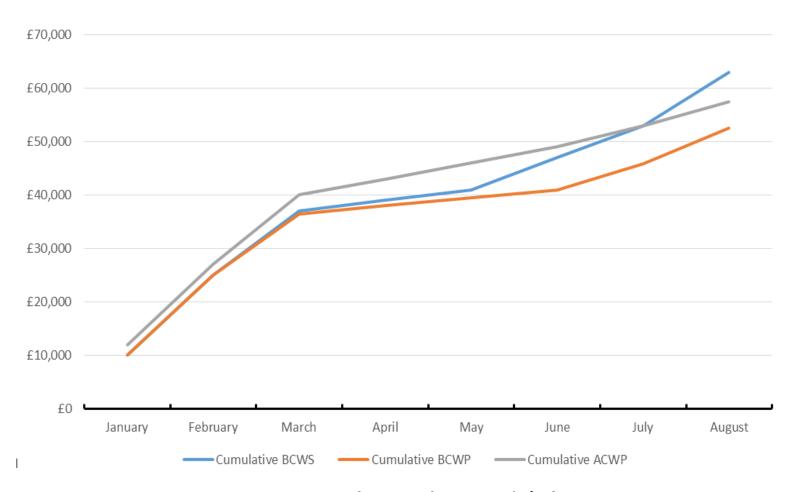
- The programme is running behind schedule (about a month in August)
- At this point, the programme is under-delivering

The Actual Cost of Worked Performed (ACWP)

- The **ACWP** represents the true (incurred) cost of the programme
- When compared with the BCWP it shows the cost compared with the budget.
 - If ACWP < BCWP then the cost is less than planned</p>
 - If ACWP > BCWP the cost is more than planned
- Unlike BCWP, the ACWP can be more than BCWS at the end of the project – it simply represents an over-spend
- The data is drawn from the data presented at the review

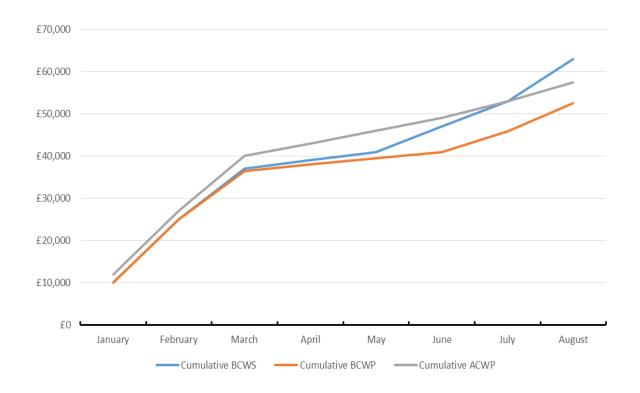


Using actual cost & actual schedule


From this given data, we add the ACWP to the table

<u>Month</u>	<u>BCWS</u>	Cumulative BCWS	<u>BCWP</u>	Cumulative BCWP	<u>ACWP</u>	Cumulative ACWP
January	£10,000	£10,000	£10,000	£10,000	£12,000	£12,000
February	£15,000	£25,000	£15,000	£25,000	£15,000	£27,000
March	£12,000	£37,000	£11,500	£36,500	£13,000	£40,000
April	£2,000	£39,000	£1,500	£38,000	£3,000	£43,000
May	£2,000	£41,000	£1,500	£39,500	£3,000	£46,000
June	£6,000	£47,000	£1,500	£41,000	£3,000	£49,000
July	£6,000	£53,000	£4,800	£45,800	£4,000	£53,000
August	£10,000	£63,000	£6,800	£52,600	£4,500	£57,500

..... And, as usual, show this graphically by plotting.



- Note that we compare ACWP with BCWP (not BCWS)
- ACWP represents the true cost of the work that we have done, NOT that we planned

project is costing *more* than planned (about £6,000 in August)

→ We are overspending!

- These three lines (BCWS, BCWP and ACWP) form the basis of EVA
- From these we can see how the project is performing in terms of
 - Schedule
 - Cost